Zusammenfassung
Spätestens seit der klassifikatorischen Erweiterung durch DSM IV und ICD 10 in Richtung
eines bipolaren Spektrums kann man annehmen, dass bipolare Störungen nicht nur klinisch
heterogen sind, sondern auch unterschiedliche Mechanismen der Erkrankung zugrunde
liegen können. Dennoch gibt es einige übergreifende Prinzipien, die bei der Regulierung
der neuronalen Erregbarkeit, aber auch bei der Überlebensfähigkeit der Neurone eine
tragende Rolle spielen. Hier sind zugleich Angriffspunkte der im klinischen Alltag
am häufigsten eingesetzten Stimmungsstabilisierer, wie Lithium, Carbamazepin, Valproat
oder Lamotrigin. Der Wirkmechanismus dieser Substanzen lässt zumindest indirekte Schlüsse
zu, welche Störungen auf zellulärer Ebene den bipolaren Störungen zugrunde liegen
könnten.
Abstract
Not ever since the broadening of diagnosis towards bipolar spectrum disorder with
DSM IV and ICD-10 at the latest, we should assume that bipolar disorders are not only
clinically heterogeneous, but may have a diversity of underlying pathophysiological
disturbances. However, there are some general principles which are of importance both
for the regulation of neuronal excitability and neuronal survival. They may also constitute
the main targets of clinically used mood stabilisers as lithium, carbamazepine, valproate
and lamotrigine. The mechanisms of action of these substances may give us at least
indirect hints for the underlying cellular disturbances in bipolar disorders.
Schlüsselwörter
Bipolare Störungen - Lithium - Valproat - Lamotrigin - Spannungsabhängige Ionenkanäle
- Zytoprotektive Proteine
Key words
Bipolar disorders - Lithium - Valproate - Lamotrigine - Voltage-gated ion channels
- Cytoprotective proteins
Literatur
- 1
Mukherjee S, Sackeim H A, Schnur D B.
Electroconvulsive therapy of acute manic episodes: a review of 50 years' experience.
Am J Psychiatry.
1994;
151(2)
169-176
- 2
Mukherjee S.
Mechanisms of antimanic effect of electroconvulsive therapy.
Convulsive Therapy.
1989;
5
227-243
- 3
Granger P, Biton B, Faure C, Vige X, Depoortere H, Graham D, Langer S Z, Scatton B,
Avenet P.
Modulation of the gamma-aminobutyric acid type A receptor by the antiepileptic drugs
carbamazepine and phenytoin.
Mol Pharmacol.
1995;
47(6)
1189-1196
- 4
Emrich H M, Wolf R.
Valproate treatment of mania.
Prog Neuropsychopharmacol Biol Psychiatry.
1992;
16(5)
691-701
- 5
Shank R P, Gardocki J F, Streeter A J, Maryanoff B E.
An overview of the preclinical aspects of topiramate: pharmacology, pharmacokinetics,
and mechanism of action.
Epilepsia.
2000;
41 Suppl 1
S3-S9
- 6
Grunze H, Erfurth A, Marcuse A, Amann B, Normann C, Walden J.
Tiagabine appears not to be efficacious in the treatment of acute mania.
J Clin Psychiatry.
1999;
60(11)
759-762
- 7
Lampe H, Bigalke H.
Carbamazepine blocks NMDA-activated currents in cultured spinal cord neurons.
Neuroreport.
1990;
1(1)
26-28
- 8
Löscher W.
Effects of the antiepileptic drug valproate on metabolism and function of inhibitory
and excitatory amino acids in the brain.
Neurochem Res.
1993;
18(4)
485-502
- 9
Teoh H, Fowler L J, Bowery N G.
Effect of lamotrigine on the electrically-evoked release of endogenous amino acids
from slices of dorsal horn of the rat spinal cord.
Neuropharmacology.
1995;
34(10)
1273-1278
- 10
Waldmeier P C, Baumann P A, Wicki P, Feldtrauer J J, Stierlin C, Schmutz M.
Similar potency of carbamazepine, oxcarbazepine, and lamotrigine in inhibiting the
release of glutamate and other neurotransmitters.
Neurology.
1995;
45(10)
1907-1913
- 11
Smith L, Price-Jones M, Hughes K, Egebjerg J, Poulsen F, Wiberg F C, Shank R P.
Effects of topiramate on kainate- and domoate-activated [14C]guanidinium ion flux
through GluR6 channels in transfected BHK cells using Cytostar-T scintillating microplates.
Epilepsia.
2000;
41 Suppl 1
S48-S51
- 12 Buki V M, Goodnick P. Catecholamines. In: Goodnick P, editor. Mania. Clinical and
Research perspectives Washington DC: APA Press 1998: 119-134
- 13
Löscher W, Hönack D.
Valproate and its major metabolite E-2-en-valproate induce different effects on behaviour
and brain monoamine metabolism in rats.
Eur J Pharmacol.
1996;
299 (1 - 3)
61-67
- 14
Sokomba E N, Patsalos P N, Lolin Y I, Curzon G.
Concurrent monitoring of central carbamazepine and transmitter amine metabolism and
motor activity in individual unrestrained rats using repetitive withdrawal of cerebrospinal
fluid.
Neuropharmacology.
1988;
27 (4)
409-415
- 15
Yatham L N, Liddle P F, Shia I, Lam R W, Ngan E.
Presynaptic dopamine function in first episode neuroleptic and mood stabilizer naive
non-psychotic mania and effects of treatment with divalproex sodium. a PET study.
Bipolar Disord.
2001;
3 [Suppl. 1]
62
- 16
Diehl D J, Gershon S.
The role of dopamine in mood disorders.
Compr Psychiatry.
1992;
33 (2)
115-120
- 17
Wong W F, Pearlson G D, Tune L E, Young L T, Meltzer C C, Dannals R F, Ravert H T,
Reith J, Kuhar M J, Gjedde A.
Quantification of neuroreceptors in the living human brain: IV. Effect of aging and
elevations of D2-like receptors in schizophrenia and bipolar illness.
J Cereb Blood Flow Metab.
1997;
17 (3)
331-342
- 18
Manki H, Kanba S, Muramatsu T, Higuchi S, Suzuki E, Matsushita S, Ono Y, Chiba H,
Shintani F, Nakamura M, Yagi G, Asai M.
Dopamine D2, D3 and D4 receptor and transporter gene polymorphisms and mood disorders.
J Affect Disord.
1996;
40 (1 - 2)
7-13
- 19
Kelsoe J R, Sadovnick A D, Kristbjarnarson H, Bergesch P, Mroczkowski-Parker Z, Drennan M,
Rapaport M H, Flodman P, Spence M A, Remick R A.
Possible locus for bipolar disorder near the dopamine transporter on chromosome 5.
Am J Med Genet.
1996;
67 (6)
533-540
- 20
Waldman I D, Robinson B F, Feigon S A.
Linkage disequilibrium between the dopamine transporter gene (DAT1) and bipolar disorder:
extending the transmission disequilibrium test (TDT) to examine genetic heterogeneity.
Genet Epidemiol.
1997;
14 (6)
699-704
- 21
Maes M, Calabrese J, Jayathilake K, Meltzer H Y.
Effects of subchronic treatment with valproate on L-5-HTP-induced cortisol responses
in mania: evidence for increased central serotonergic neurotransmission.
Psychiatry Res.
1997;
71 (2)
67-76
- 22
Normann C.
Towards a new model for cellular pathophysiology in affective disorder.
Acta Neuropsychiatrica.
2000;
12 (3)
77-80
- 23
Mühlbauer H D, Müller-Oerlinghausen B.
Fenfluramine stimulation of serum cortisol in patients with major affective disorders
and healthy controls: further evidence for a central serotonergic action of lithium
in man.
J Neural Transm.
1985;
61 (1 - 2)
81-94
- 24
Hegerl U, Wulff H, Müller-Oerlinghausen B.
Intensity dependence of auditory evoked potentials and clinical response to prophylactic
lithium medication: a replication study.
Psychiatry Res.
1992;
44 (3)
181-190
- 25
Whitton P S, Oreskovic D, Jernej B, Bulat M.
Effect of valproic acid on 5-hydroxytryptamine turnover in mouse brain.
J Pharm Pharmacol.
1985;
37 (3)
199-200
- 26
Dailey J W, Reith M E, Yan Q S, Li M Y, Jobe P C.
Carbamazepine increases extracellular serotonin concentration: lack of antagonism
by tetrodotoxin or zero Ca2+.
Eur J Pharmacol.
1997;
328 (2 - 3)
153-162
- 27
Southam E, Kirby D, Higgins G A, Hagan R M.
Lamotrigine inhibits monoamine uptake in vitro and modulates 5-hydroxytryptamine uptake
in rats.
Eur J Pharmacol.
1998;
358
19-24
- 28
von Wegerer J, Berger M, Walden J.
Changes of serotonin-induced field potentials by lamotrigine.
Epilepsia.
1997;
38 [Suppl. 3]
175-176
- 29
Macdonald R L, Kelly K M.
Antiepileptic drug mechanisms of action.
Epilepsia.
1995;
36 Suppl 2
S2-12
- 30
Mishory A, Yaroslavsky Y, Bersudsky Y, Belmaker R H.
Phenytoin as an antimanic anticonvulsant: a controlled study.
Am J Psychiatry.
2000;
157 (3)
463-465
- 31
Grunze H, Kammerer C, Ackenheil M.
The neurobiology of bipolar disorder.
Journal of Bipolar Disorder.
1997;
1 (1)
2-12
- 32
Hough C, Lu S J, Davis C L, Chuang D M, Post R M.
Elevated basal and thapsigargin-stimulated intracellular calcium of platelets and
lymphocytes from bipolar affective disorder patients measured by a fluorometric microassay.
Biol Psychiatry.
1999;
46 (2)
247-255
- 33
el Mallakh R S, Wyatt R J.
The Na,K-ATPase hypothesis for bipolar illness.
Biol Psychiatry.
1995;
37 (4)
235-244
- 34
Wood A J, Elphick M, Aronson J K, Grahame-Smith D G.
The effect of lithium on cation transport measured in vivo in patients suffering from
bipolar affective illness.
Br J Psychiatry.
1989;
155
504-510
- 35
Moscovich D G, Belmaker R H, Agam G, Livne A.
Inositol-1-phosphatase in red blood cells of manic-depressive patients before and
during treatment with lithium.
Biol Psychiatry.
1990;
27 (5)
552-555
- 36
Berridge M J, Irvine R F.
Inositol phosphates and cell signalling.
Nature.
1989;
341 (6239)
197-205
- 37
Vaden D L, Ding D, Peterson B, Greenberg M L.
Lithium and valproate decrease inositol mass and increase expression of the yeast
ino1 and ino2 genes for inositol biosynthesis.
J Biol Chem.
2001;
276
15 466-15 471
- 38
Lisman J.
The CaM kinase II hypothesis for the storage of synaptic memory.
Trends Neurosci.
1994;
17 (10)
406-412
- 39
Lenox R H, Watson D G.
Lithium and the brain: a psychopharmacological strategy to a molecular basis for manic
depressive illness.
Clin Chem.
1994;
40 (2)
309-314
- 40
Walden J, Grunze H, Bingmann D, Liu Z, Dusing R.
Calcium antagonistic effects of carbamazepine as a mechanism of action in neuropsychiatric
disorders: studies in calcium dependent model epilepsies.
Eur Neuropsychopharmacol.
1992;
2 (4)
455-462
- 41
Altrup U, Gerlach G, Reith H, Said M N, Speckmann E J.
Effects of valproate in a model nervous system (buccal ganglia of Helix pomatia):
I. Antiepileptic actions.
Epilepsia.
1992;
33 (4)
743-752
- 42
Wegerer J V, Hesslinger B, Berger M, Walden J.
A calcium antagonistic effect of the new antiepileptic drug lamotrigine.
Eur Neuropsychopharmacol.
1997;
7
77-81
- 43
Xie X, Hagan R M.
Cellular and molecular actions of lamotrigine: Possible mechanisms of efficacy in
bipolar disorder.
Neuropsychobiology.
1998;
38
119-130
- 44
Hollister L E, Trevino E S.
Calcium channel blockers in psychiatric disorders: a review of the literature.
Can J Psychiatry.
1999;
44 (7)
658-664
- 45
Garcia D A, Franke H, Pissarek M, Nieber K, Illes P.
Neuroprotection by ATP-dependent potassium channels in rat neocortical brain slices
during hypoxia.
Neurosci Lett.
1999;
273 (1)
13-16
- 46
Tanaka T, Yoshida M, Yokoo H, Mizoguchi K, Tanaka M.
ATP-sensitive K+ channel openers block sulpiride-induced dopamine release in the rat
striatum.
Eur J Pharmacol.
1996;
297 (1 - 2)
35-41
- 47
Zona C, Tancredi V, Palma E, Pirrone G C, Avoli M.
Potassium currents in rat cortical neurons in culture are enhanced by the antiepileptic
drug carbamazepine.
Can J Physiol Pharmacol.
1990;
68 (4)
545-547
- 48
Olpe H, Kolb C N, Hausdorf A, Haas H L.
4-aminopyridine and barium chloride attenuate the anti-epileptic effect of carbamazepine
in hippocampal slices.
Experientia.
1991;
47 (3)
254-257
- 49
Georg M D, Klitgaard H.
Inhibition of neuronal hypersynchrony in vitro differentiates levetiracetam from classical
antiepileptic drugs.
Pharmacol Res.
2000;
42 (4)
281-285
- 50
Walden J, Altrup U, Reith H, Speckmann E J.
Effects of valproate on early and late potassium currents of single neurons.
Eur Neuropsychopharmacol.
1993;
3 (2)
137-141
- 51
Grunze H, Greene R W, Möller H-J, Meyer T, Walden J.
Lamotrigine may limit pathological excitation in the hippocampus by modulating a transient
potassium outward current.
Brain Res.
1998;
791 (1 - 2)
330-334
- 52
Chandy K G, Fantino E, Wittekindt O, Kalman K, Tong L L, Ho T H, Gutman G A, Crocq M A,
Ganguli R, Nimgaonkar V, Morris-Rosendahl D J, Gargus J J.
Isolation of a novel potassium channel gene hSKCa3 containing a polymorphic CAG repeat:
a candidate for schizophrenia and bipolar disorder?.
Mol Psychiatry.
1998;
3 (1)
32-37
- 53
Chang A, Li P P, Kish S, Warsh J J.
Altered cAMP-dependent protein kinase subunit immunolabeling in postmortem brain from
patients with bipolar affective disorder.
Bipolar Disord.
2001;
3 [Suppl. 1]
31
- 54
Manji H K, Lenox R H.
Protein kinase C signaling in the brain: molecular transduction of mood stabilization
in the treatment of manic-depressive illness.
Biol Psychiatry.
1999;
46 (10)
1328-1351
- 55
Jensen J B, Mork A.
Altered protein phosphorylation in the rat brain following chronic lithium and carbamazepine
treatments.
Eur Neuropsychopharmacol.
1997;
7 (3)
173-179
- 56
Bebchuk J M, Arfken C L, Dolan M S, Murphy J, Hasanat K, Manji H K.
A preliminary investigation of a protein kinase C inhibitor in the treatment of acute
mania.
Arch Gen Psychiatry.
2000;
57 (1)
95-97
- 57
Hughes P, Dragunow M.
Induction of immediate-early genes and the control of neurotransmitter-regulated gene
expression within the nervous system.
Pharmacol Rev.
1995;
47 (1)
133-178
- 58
Chen G, Masana M I, Manji H K.
Lithium regulates PKC-mediated intracellular cross-talk and gene expression in the
CNS in vivo.
Bipolar Disord.
2000;
2 (3)
217-236
- 59
Bonnet U, Bingmann D, Wiemann M.
Intracellular pH modulates spontaneous and epileptiform bioelectric actifity of hippocampal
CA3 neurones.
Eur Neuropsychopharmacol.
2000;
97
97-103
- 60
Kato T, Murashita J, Kamiya A, Shiori T, Kato N, Inubushi T.
Decreased brain intracellular pH measured by 31P-MRS in bipolar disorder: a confirmation
in drug-free patients and correlation with white matter hyperintensity.
Eur Arch Psychiatry Clin Neurosci.
1998;
248
301-306
- 61 Drevets W C, Gadde K M, Krishnan K BR. Neuroimaging studies of mood disorders. In:
Charney DS, Nestler EJ, Bunney WE, editors. Neurobiology of mental illness New York:
Oxford Press 1999: 394-418
- 62
Chen G, Huang L D, Zeng W Z, Manji H K.
Mood stabilizers regulate cytoprotective and mRNA-binding proteins in the brain: long-term
effects on cell survival and transcript stability.
Int J Neuropsychopharmacol.
2001;
4 (1)
47-64
- 63
Bishop A L, Hall A.
Rho GTPases and their effector proteins.
Biochem J.
2000;
348 (2)
241-255
- 64
Kaibuchi K, Kuroda S, Amano M.
Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian
cells.
Annu Rev Biochem.
1999;
68
459-486
- 65
Rundfeldt C.
Potassium channels and neurodegenerative diseases.
Drug News Perspect.
1999;
12
99-104
Dr. med. H. Grunze
Psychiatrische Klinik der LMU
Nußbaumstr. 7
80336 München
Email: grunze@psy.med.uni-muenchen.de